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Abstract

Quantitative precipitation forecasts (QPF) are often verified using catego-

rical statistics. The traditionally used 2×2 contingency table is modified

here by applying sample quantiles instead of fixed amplitude thresholds.

This calibration is based on the underlying precipitation distribution and

has beneficial implications for categorical statistics. The quantile diffe-

rence and the debiased Peirce skill score split the total error into the

independent components of bias and pixel overlap. It is shown that they

provide a complete verification set with the ability to assess the full range

of rainfall intensities. The technique enables skill to be estimated with-

out spurious influences from the marginal totals and the problem of hed-

ging is eluded. To exemplify the practical potential of the quantile–based

contingencies, the method is applied to 6.5 years of operational rainfall

forecasts from the Swiss Federal Office of Meteorology and Climatology

(MeteoSwiss). Daily accumulations of the COSMO model at 7 km grid

resolution are compared to a high–quality gridded observational record

of spatially interpolated rain gauge data. The quantile–based scores are

applied to single grid points and to predefined regions. A high–resolution

error climatology is built up and reviewed in terms of potential error

sources in the model. The seasonal QPF performance exhibits the most

severe overestimation over the Northern Alps during winter, indicative

of the impact of the model ice phase. The QPF performance related to

model updates, such as the introduction of the prognostic precipitation

scheme is also evaluated. It is demonstrated that the overlap of rain pixels

continuously increases for subsequent versions of the COSMO model. All

over the period, a strong geographical gradient of the rainfall matching is

evident with a much higher Peirce skill score on the Alpine south side.
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Zusammenfassung

Zur Verifikation von Quantitativen Niederschlagsvorhersagen (QNV) wer-

den häufig kategorische Fehlermasse verwendet. Die traditionellerweise

benutzte 2×2 Kontingenztafel wird hier durch die Anwendung von Quan-

tilen anstelle von festen Amplitudenschwellwerten modifiziert. Diese Kali-

brierung orientiert sich an der zugrundeliegenden Niederschlagsverteilung

und beeinflusst die kategorischen Fehlermasse vorteilhaft. Die Quantils-

differenz und der angepasste Peirce Skill Score teilen den Gesamtfehler in

die unabhängigen Komponenten des Bias und der Gitterpunktsüberlappung

auf. Es wird gezeigt, dass sie eine vollständige Verifikationsbasis bilden,

die den gesamten Bereich an Niederschlagsintensitäten abdecken kann.

Die Methodik erlaubt es, den Skill des Modells ohne störende Einflüsse der

Randverteilungen zu bestimmen und umgeht die Problematik des ”Hed-

ging”. Um die praktische Einsetzbarkeit von quantilsbasierten Fehler-

massen aufzuzeigen, wird die Methode auf 6.5 Jahre an Niederschlagsvor-

hersagen vom Schweizer Bundesamt für Meteorologie und Klimatologie

(MeteoSchweiz) angewendet. Tägliche Summen aus dem COSMO–Mo-

dell mit einer horizontalen Auflösung von 7 km werden mit einem hoch-

wertigen gegitterten Beobachtungsdatensatz verglichen. Die quantilsbasier-

ten Fehlermasse werden auf einzelne Gitterpunkte und auf festgelegte Ge-

biete angewendet. Eine hochaufgelöste Fehlerklimatologie wird erstellt

und im Hinblick auf mögliche Fehlerquellen des Modells untersucht. Die

jahreszeitlich gemittelten QNV–Fehler zeigen die grösste Überschätzung

über den nördlichen Alpen im Winter, was auf den Einfluss des Eissche-

mas hinweist. Die QNV–Fehler während verschiedener Phasen der opera-

tionellen COSMO–Modellentwicklung, wie z.B. der Einführung des prog-

nostischen Niederschlagsschemas, werden ebenfalls quantifiziert. Dabei

wird gezeigt, dass sich die Gitterpunktsüberlappung der Niederschlags-

gebiete kontinuierlich verbessert hat. Über die ganze Periode fällt ein

grosser geographischer Fehlergradient mit einem viel höheren Peirce Skill
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Score auf der Alpensüdseite auf.
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1 Introduction

Precipitation forecasts are of societal, economic, and social interest and decision

ma-king often relies on accurate rainfall predictions. Hence, research activity

currently is large to improve Quantitative Precipitation Forecasting (QPF) and

weather centers continuously evaluate their operational high–resolution limited–

area models (LAM) to trace error sources.

QPF is particularly challenging over complex terrain. The Mesoscale Alpine

Programme (MAP, Benoit et al., 2002) provided many new insights into the

dynamics and challenges of predicting orographic precipitation (e.g. Richard

et al., 2007, Rotunno and Houze, 2007, and references therein). A variety of

factors determine the formation of heavy precipitation and influence QPF qual-

ity. They include: (a) accuracy of the synoptic–scale upper–level triggers of

precipitation and their correct mesoscale interaction with the underlying orog-

raphy (e.g. Fehlmann and Quadri, 2000, Martius et al., 2006), (b) representation

of the orography (Accadia et al., 2005) and model resolution (Buzzi et al., 2004,

Zängl, 2007), (c) the low-level moisture field (Martius et al., 2006, Mahoney

and Lackmann, 2007) and the boundary layer structure (Rotunno and Houze,

2007), (d) enhancement of precipitation by microphysical processes (e.g. Zeng

et al., 2001, Pujol et al., 2005) and turbulence (Houze and Medina, 2005).

Also the formulation and numerics of the Numerical Weather Prediction (NWP)

system itself can influence QPF. Kaufmann et al. (2003) evaluated the former

hydrostatic LAM of the COSMO consortium1 and found that the model error

is exceedingly sensitive to the activation of convection in parameterized pre-

cipitation and the sloping topography in resolved precipitation. K̊allberg and

Montani (2006) compared a non–hydrostatic versus a hydrostatic model which

also differed in the data-assimilation schemes and numerics. Above all, they

1web site: www.cosmo-model.org
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found more intense precipitation extremes in the non-hydrostatic formulation

due to dissimilarities of the convection schemes. The prognostic treatment of

precipitation markedly improved the wet (dry) bias on the windward (down-

wind) side of orography which is typically noted for QPF over complex terrain

(e.g. Elementi et al., 2005).

From a more generic point of view, Hohenegger and Schär (2007) investigated

the dynamics of error growth. They used a range of different initial perturba-

tion procedures of a high-resolution ensemble and found a rapid radiation of

the initial uncertainties throughout the computational domain and a further

amplification over moist convectively unstable regions (compare also Hoheneg-

ger et al., 2006).

As is clear from the above, the problem of identifying sources of QPF errors

is highly complex. An additional drawback arises from the fact that most of

our knowledge today is based on case studies or on relatively short–term pe-

riods (up to 1–2 years) of investigation. However, QPF quality tends to be

more case–dependent than model–dependent (Richard et al., 2003). A consis-

tent quantification and rigorous investigation of QPF over a longer–term period

is highly desirable to trace QPF errors and identify the main model shortcom-

ings. In view of this, novel verification techniques for precipitation forecasts are

currently being developed. Most notably, spatial approaches are able to con-

sider different areal error aspects. An example is the intensity–scale technique

(Casati et al., 2004, Mittermaier, 2006) which diagnoses skill as a function of

”precipitation rate intensity” (Casati et al., 2004) and spatial scale of the error.

Another example is the object–based quality measure SAL (Wernli et al., 2008)

which assesses the coherence in structure, amplitude and location of precipita-

tion objects. As a matter of fact, the findings of these and comparable methods

are related to predefined areas, which leads to a smoothing of precipitation and
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local error features. Hence the attribution of individual verification aspects to

specific locations or sites is hardly possible. Pertinent information is therefore

lost over mountainous terrain where the spatial variability of atmospheric pa-

rameters usually is large (e.g. Frei and Schär, 1998, Schmidli et al., 2002).

In this context, the traditional grid–point verification still provides an expedi-

ent alternative. As explained by Murphy and Winkler (1987) or McBride and

Ebert (1999), categorical statistics are traditionally used for dichotomous veri-

fication purposes such as the validation of precipitation. After the selection of

a threshold value it is tested whether model and observations exceed the limit.

In this sense, all standard methods rest upon a conventional 2x2 contingency

table (Tab. 1), consisting of the number of hits H, misses M, false alarms F and

correct negatives Z. From these four entries several error measures (or scores)

such as frequency bias, probability of detection (POD), false alarm ratio, threat

score, equitable threat score, Peirce skill score (PSS, Peirce, 1884), odds ratio

skill score and others can be derived.

A desired property of categorical measures is equitability as defined by Gandin

and Murphy (1992). The definition implies that random and constant forecasts

possess unvarying expectation values irrespective of varying marginal totals.

A necessary prerequisite for equitability is the ability to single out the joint

distribution, defined by forecasts and observations together, and to reject the

marginal distributions, defined separately by forecasts and observations. In this

sense, only equitable scores ensure a fair comparison of samples with different

characteristics. A simple example for a non–equitable score is the POD which

exhibits higher values for random forecasts of frequent events than for those of

rare events. Non–equitable measures can upgrade forecasts which are not con-

sistent i.e. which do not correspond to the forecaster’s judgment (see Murphy,

1993, for explanation). Consequently, both model developers and operational
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forecasters are tempted by hedging (Murphy and Epstein, 1967) and falsely ad-

just the number of forecasted events to achieve a better scoring.

So far, opinions about equitability substantially diverge in the literature. As

proven by Gandin and Murphy (1992), the PSS, which is equivalent to the

Hanssen–Kuipers discriminant (Hanssen and Kuipers, 1965), constitutes the

unique solution (i.e. the only one possible) which satisfies the strict conditions

for equitability, namely an invariable rating of both random and constant fore-

casts. In fact, the uniqueness of the PSS still applies to conditions with an

unequal penalty for misses and false alarms (Manzato, 2005). However, the

uniqueness is lost, if the conditions for equitability are slightly relaxed, i.e.

constant forecasts are allowed to score unlike random forecasts (Marzban and

Lakshmanan, 1999). In theory, scores can be equitable or nearly equitable (in

the sense that random/constant forecasts do not vary or only slightly vary) and

provide a verification free from disturbing mathematical antagonisms. In prac-

tice, the usefulness of measures essentially varies in different constructed and

real cases (e.g. Marzban, 1998, Hamill and Juras, 2006). On the one hand, it

is not feasible to compare forecasts for different event frequencies or base rates

(e.g. Mason, 2003). The so–called base–rate error vitiates the value of finite–

accuracy forecasts for rare events (Matthews, 1996). Even though most scores

are deeply affected by this dilemma, Woodcock (1976) and Mason (1989) find

the PSS to be unaffected. Indeed, Thornes and Stephenson (2001) only grant

the odds ratio skill score and the PSS to cope with small base rates. On the

other hand, common scores depend on the bias which Hilliker (2004) exemplifies

by means of the threat score. The PSS exhibits the detriment of approaching

the POD in rare–event situations. Since the POD correlates with the bias, the

PSS does as well. Mesinger (2007) complains that the impact of the bias cus-

tomarily is estimated in a subjective manner, because objective approaches are
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still missing. He introduces a method to debias the threat score and likewise

the equitable threat score. To this end, he converts the standard contingency

table to a setting with a unit bias and recommends it to use for an objective

verification of the placing of precipitation systems. Although Mesinger’s ap-

proach alleviates some of the basic problems of verifying biased distributions, a

drawback remains, in that assumptions need to be made which are not derivable

from the underlying distributions alone.

The purpose of our study is twofold. At first, we introduce a refined grid–

point verification measure which fulfills the requirements of equitablility with-

out making any additional assumptions. Thereby, we make use of the definition

of a quantile which is equivalent to the terms of percentile and fractile (Wilks,

2006). Then we apply this measure to a long–term climatology of operational

high–resolution precipitation forecasts over complex terrain. The resulting er-

ror climatology allows for an extensive model diagnosis to identify possible error

sources. It is long enough to investigate subsets of the data base, such as sea-

sonal error variations and chronological error developments caused by different

operational model versions.

The structure of the paper is the following: Some background information about

the observational analysis, the verified COSMO model and the geographic set-

ting is provided in section 2. The refined verification methodology is derived

and discussed in section 3. Then some observed precipitation characteristics

are described in section 4, before we turn to present the verification results.

Section 5 pinpoints seasonal error variations and section 6 highlights character-

istics of different model versions. Finally results are discussed and synthesized

in sections 7 and 8.
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2 Verification data, model and domain

2.1 Observational analysis

The reference dataset used for model evaluation in this study is a gridded

mesoscale analysis for Switzerland, which is derived from rain gauge observa-

tions by spatial interpolation. The underlying observation network encompasses

typically 450 stations, corresponding to an average station distance of 10–15

km (Konzelmann and Weingartner, 2007). The Alpine in–situ observations are

among the densest world–wide in high–altitude topography (Frei and Schär,

1998). Despite slight variations in the reading times across the network, the

analyses can be considered as representing 24-hour totals from 06:00 until 06:00

UTC (Frei and Schär, 1998).

The spatial analysis of rain-gauge observations is conducted with a modified

version of the SYMAP algorithm, a distance and direction weighting scheme by

Shepard (1984) (see also Willmott et al., 1985). In deviation from the tradi-

tional scheme, our procedure encompasses an antecedent climatological scaling

of station observations and subsequent re-scaling of the gridded anomalies with

a high-resolution climatology (Schwarb et al., 2001). The procedure is similar to

that of Widmann and Bretherton (2000) and is applied to reduce systematic er-

rors due to biases in the distribution of stations with height. In our procedure,

the SYMAP algorithm is applied with a different distance weighting scheme.

The purpose is to represent, in the analysis, regional area mean values rather

than point values (see Frei and Schär, 1998). The adopted analysis method is

similar to that applied in Frei et al. (2006), except that the analysis is under-

taken originally on a 2 km grid and is subsequently aggregated to the grid of

the forecasting model.

It should be noted that the verification dataset is affected by systematic biases

in the rain-gauge measurements. In Switzerland rain-gauge under-catch is ex-
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pected to range from about 4% at low altitudes in summer to more than 40%

above 1500 mMSL in winter (Sevruk, 1985) and has to be considered while rat-

ing the rainfall bias later on. Moreover, there may be systematic inconsistencies

between the model and verification grids as a result of differences in effective

resolution. From the observation network we expect an effective resolution of

the verification dataset in the order of 15 km in the flatlands and 15–25 km

in the mountains. This is probably close but slightly coarser than the model

resolution when taking two nominal grid pixels (i.e. 2x7 km = 14 km) as the

effective model resolution.

2.2 Model description

The error climatology derived in this study is based on the non–hydrostatic

model of the COSMO consortium in operation at the Swiss Federal Office of

Meteorology and Climatology (MeteoSwiss). The model is the Swiss counter-

part of the former German Lokal Modell which has been described by Steppeler

et al. (2003). It has been developed for the purpose of high–resolution weather

forecasts with a preferable representation of the meso–γ scale. A detailed de-

scription currently can be looked up on www.cosmo-model.org. The horizontal

mesh size of the model is 7km and the vertical resolution constitutes 45 height–

based hybrid levels. The grid structure is based on an Arakawa C setup with

Lorenz vertical grid staggering. The basic equations are solved in a fully elastic

manner with a dry reference state at rest. Advection is treated by a split explicit

scheme based on a filtered leapfrog time integration (Asselin, 1972, Skamarock

and Klemp, 1992) with a main time step of 40s. Moist convection is treated

by the mass flux convergence scheme of Tiedtke (1989). The warm–rain regime

refers to a bulk water–continuity model proposed by Kessler (1969) whereas

the ice–cloud regime is based on an extended saturation adjustment technique
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(Lord et al., 1984).

The preoperational phase of the model at MeteoSwiss started in July 2000 and

the model became operational in April 2001. The geographical domain com-

prises central Europe and receives boundary conditions from the GME model of

the German Meteorological Service and later from the Integrated Forecast Sys-

tem (IFS) of the ECMWF. The updating of the boundaries is treated with an

adjusted Davies relaxation scheme (Davies, 1976). In the present study daily

precipitation accumulations of the period between July 2000 and December

2006 are analyzed over Switzerland. Investigations are confined to operational

00 UTC model runs, from which daily sums are constructed using lead times

between 6 and 30 hours.

Since both preoperational and operational forecasts are evaluated, there are var-

ious model updates within the considered period. Altogether there are roughly

60 changes of the model setup including bug corrections. Most of them are

not expected to have a significant impact on daily rainfall fields. However, few

upgrades are considered to influence QPF quality decisively. We refer to the

most important changes in section 6.

2.3 Geographic aspects

Altogether 859 grid points of the COSMO model are evaluated within the bor-

ders of Switzerland (∼41000 km2). To highlight regional disparities with respect

to QPF quality, the whole area is subdivided into six orographically distinct

parts (Fig.1) using contour lines of the model topography as well as other land-

marks. The area of the Jura comprises the Swiss part of the Jura mountains

as well as some adjacent pixels in the canton Jura. The low elevations in the

Middleland reach from Lake Geneva in the southwest to Lake Constance in the

northeast. The hilly relief only varies slightly in height here. The northern
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Alpine crest as well as the approximate canton borders between the Valais, the

Ticino and the Grisons split up the Alps into four mountainous domains. The

Valais and the Grisons can be regarded as central Alpine domains, whereas the

Northern Alps and the Ticino lie on opposing sides of the Alpine crest. Overall

highest elevations (around 3000 mMSL in the model topography) are found in

the middle of the northern Alpine crest, along the southern border of the Valais

and in the south of the Grisons. They are marked with an X in Fig.1. Indi-

vidual regions contain the following numbers of COSMO grid points: Jura 55,

Middleland 271, Northern Alps 208, Valais 114, Ticino 71, Grisons 140.

3 Methodology of verification

The standard 2x2 contingency table (Tab. 1) for dichotomous events (relating

to a predefined precipitation threshold) contains the following entries: hits H,

misses M, false alarms F and correct negatives Z. The four numbers are used to

compute several different categorical scores (see section 1 for examples). Vary-

ing the threshold from low (representing weak precipitation rates) to high values

(representing strong precipitation rates) renders possible a comprehensive inves-

tigation of different intensities.

However, there are profound shortcomings, if standard categorical statistics are

applied directly. Firstly, a predetermined amplitude threshold cuts the pre-

cipitation distributions at an unknown location, i.e. it is not obvious a priori

whether the threshold value represents light or heavy rainfall within the con-

sidered sample. In an extreme case, single cells of the contingency table can

become zero. Then some scores cannot be computed (due to a division by zero)

and statements about model behavior are hard to make. Secondly, the distribu-

tions under comparison usually differ considerably with respect to their range of

values. Customary scores do not fulfill the requirements of equitability (Gandin
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and Murphy, 1992) or fail to be firm with respect to hedging (Stephenson, 2000).

Thirdly, the joint distribution always comprises three degrees of freedom, as the

four entries are only linked to the sample size. Three scores are required to

display all verification characteristics. Stephenson (2000) proposes the triplet

of odds ratio skill score, PSS and frequency bias. According to his comments, it

is possible to draw complementary information out of the considered datasets,

if concurrent scores are applied simultaneously. But it remains ambiguous, how

to attribute individual verification aspects to these measures which are not all

independent from each other. Fourthly, we argue that it is not possible to inte-

grate amplitude–based scores over a range of intensities. In principle, it is not

meaningful to average scores for different thresholds, because it is not obvious

how many data points fall within a certain range of thresholds.

In this study, a refined version of categorical statistics is proposed to address the

above problems and avoid equivocal verification results. The contingency table

is defined by means of frequency thresholds instead of amplitude thresholds. To

this end, sample quantiles are computed for both data records independently.

Thus, the two datasets are compared using the same relative cut–off (according

to the definition of a quantile) within each distribution, thereby automatically

omitting the bias. The full derivation is outlined in appendix A. By using quan-

tiles, only one degree of freedom is left within the contingency table (Appendix

A). It is hence sufficient to acquire a single entry of the contingency table to

determine the joint distribution.

Regardless of the contingencies, the bias can simply be assessed by the abso-

lute or relative quantile difference QD or QD′ (Appendix B). Contrary to the

approach of Ferro et al. (2005), quantile differences are not transformed here,

but reveal differences of rainfall distributions both in location and scale. For

instance, an underforecasting of light rainfall can be easily distinguished from
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an overforecasting of heavy rainfall. The overall offset, covering the entire dis-

tribution, can be reproduced by a weighted integral over the absolute value of

all quantile differences (Appendix B, Eq. 4). In this way, amplitude errors are

summarized and the dissimilarity of the considered distributions are quantified.

As noted earlier, the PSS (equivalent to the true skill statistics and the Hanssen–

Kuipers discriminant) is able to measure skill without being perturbed by the

base rate (e.g. Woodcock, 1976, Mason, 1989). The sensitivity to hedging in-

creases with the rarity of events (Stephenson, 2000), as the PSS converges to-

wards the POD. However, quantile–based contingency tables overcome possible

biases. If the number of predicted events are modified in the model output or

later in the issued forecast, the definition of a quantile requires that they are

compared to the same number of observed events. Consequently, quantile–based

scores circumvent the problem of hedging. In respect thereof, the PSS is best

suited to display the skill in our balanced setup and able to quantify the over-

lap, or the permutation, of bias–adjusted datasets (Appendix C). In the case of

equal marginal totals (Appendix A, Eq. 1), the PSS merges into a pure ranking

of misses (Appendix C, Eq. 6). If the proportion of misses with respect to

their random expectation remains fixed, all forecasts receive the same constant

rating. Given that a certain ratio fulfills the definition of a constant forecast, it

is permissible to compare PSS values for different quantile probabilities or base

rates directly. Similarly to the QD, the weighted integral of the PSS over the

whole range of quantiles (Appendix C, Eq. 9) summarizes permutation errors

over the entire range of intensities and the overall matching characteristics can

be condensed in a single number.

Following the above derivation, we are left with two independent measures

QD/QD′ and PSS which concertedly characterize the overall forecast error,

namely bias and permutation/overlap/matching error. Accordingly, the sam-
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ple uncertainty also subdivides into the two parts (Appendix D). From the

course of the confidence intervals in Fig. 12, it can be gleaned that the quantile-

based PSS remains much better defined for rare events than the conventional

amplitude–based PSS. Quantile probabilities inherently are not affected by am-

plitude uncertainties, but their transformation to precipitation amounts suffers

from ambiguities. We can achieve a high confidence for the PSS value of a

certain quantile, but still hold a low confidence for the precipitation estimation

of the quantile. Some applications require a link to rainfall amounts whereas

others only require a link to frequencies which is automatically provided by

quantiles.

4 Climatology of observations

Before we turn to present quantile–based error characteristics, it is helpful to

consider observed frequency distributions with respect to seasonal and regional

variations. Note first from Fig. 2 that the vast majority of days (∼80%) within

the 6.5 year period experience precipitation of less than 5mm/day. Hence, the

following section focuses on the upper part of the distributions with higher rain-

fall amounts.

During winter, the lowest precipitation amounts occur over Switzerland (Fig.

2a). Convection is suppressed by snow cover and a highly stable boundary

layer. Consequently, precipitation events in uniform airmasses are sparse and

accumulations are dominated by frontal passages. Weak and moderate rainfall

events (<15 mm/day) are rarest in the Grison and strong events (>15 mm/day)

are rarest in the Middleland. Modest rainfall (∼15 mm/day) is recorded most

frequently in northern parts of Switzerland. On average, there are 10 days

per winter with accumulations of more than 10 mm in the Middleland and the

Northern Alps. If at all, heavy precipitation occurs very sparely in southern
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parts of Switzerland. Comparatively high amounts are recorded over the Jura

mountains, the Northern Alps and at the western edge of the Valais. These max-

ima can be attributed to winterly weather regimes with westerlies and north-

westerlies (see also Plaut and Simonnet, 2001).

During equinoctial seasons, regional distributions are more or less similar to the

north of the Alps, but differ considerably to the south (Fig. 2b and Fig. 2d).

To the north, low and medium intensities (<30 mm/day) are slightly more fre-

quent during spring, whereas high intensities (>30 mm/day) are slightly more

frequent during fall. 10 mm are exceeded on 10 to 16 days during a season. Since

northerly wind directions are more dominant at the beginning of the year (Plaut

and Simonnet, 2001), total amounts over the Northern Alps during spring exceed

those during fall. However, northerly flow mostly brings about low amounts and

rarely entails strong events. In contrast to the rest of Switzerland, frequencies

in southeastern areas considerably differ during spring and fall with double ac-

cumulations in fall. Without exception, rainfall frequencies of all intensities are

higher late in the year. In the Grisons, 10 mm per day on average is exceeded

on 8 days per spring and 9 to 10 days per fall. In the Ticino, the frequency

of having more than 10 mm even increases from 11 days during spring to 15

days during fall. Stratospheric intrusions have their climatological maximum

both during spring and fall, but their precipitation efficiency is higher between

September and November when they transport warmer and moister air towards

the Alpine south side (Lin et al., 2001, Martius et al., 2006). Related events

can locally deliver more than 150 mm/day in the Ticino. The Valais roughly re-

ceives equal rainfall amounts from the north and the south. Light and medium

events (<30 mm/day) occur slightly more often during spring, whereas strong

events (>30 mm/day) occur much more often during fall. 10 mm is reached on

average on 11 days per spring and 9 days per fall. 50 mm is reached on a single
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day per fall, but even more seldomly per spring.

During summer, highest rainfall is recorded over the Northern Alps (Fig. 2c).

10 mm per day on average is exceeded on 19 days over the northern Alpine

ridges and foothills which is 6 to 8 days more often than elsewhere. The North-

ern Alps receive precipitation most frequently, followed by the Ticino and the

rest of Switzerland. However, the Ticino receives the majority of strong events

(>25 mm/day), followed by the Northern Alps and the rest of Switzerland.

Even though the domains of the Jura and the Middleland contain prominent

thunderstorm tracks (Houze et al., 1993), the impact on accumulations is weak.

Higher daily accumulations are rarest here by far.

If the spatial rainfall distributions within the predefined regions are considered

(Schär et al., 1998, Frei et al., 2006), some local characteristics can be pointed

out. Generally, largest amounts are found on the windward side and smallest

amounts on the lee side of towering mountains or crests. Specific positions de-

pend on the prevailing flow directions which release precipitation (Plaut and

Simonnet, 2001). Thus, relatively small amounts are found on the Alpine south

side during winter and on the Alpine north side during fall. Outstanding loca-

tions with lowest values are valleys and basins in the interior of the mountains.

The average remains below 3 mm per day here. The overall maximum is found

in a confined area around the highest summits within the northern Alpine crest

(marked in Fig. 1). Including dry days, the seasonal mean constitutes 9 mm

per day during summer here, whereas other maxima further to the northeast

are 2 mm lower. The strong events during fall entail a seasonal mean of about

8 mm per day over the western part of the Ticino.
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5 Seasonal error climatology

In the following, the focus is on seasonal error discrepancies within the com-

plete 6.5 year period. Quantile differences and PSS values are computed for all

seasons independently. First of all, maps for 90% quantiles are discussed reveal-

ing gridbox–scale error variations. The corresponding thresholds are exceeded

every tenth day and expected to represent general QPF errors of reasonably

strong events. Then the grid–point based scores are aggregated, i.e. applied for

regions as a whole. Verification measures are computed for the compound data

(grid points × days) of our six predefined domains (Fig.1) and discussed with

respect to the whole range of intensities. Finally, the regional model perfor-

mance is reviewed with the aid of integral error values summarizing the overall

performance.

5.1 Grid–point based verification of 90% quantiles

Throughout all seasons, a strong wet bias is evident over the Northern Alps

(Fig.3). During the course of the year, the 90% quantiles roughly account

between 10 mm/day (winter) and 25 mm/day (summer) in the observations.

However, they are more than 20 mm/day or locally 30 mm/day higher in the

model forecasts. This bias is confined to few grid points during spring and fall

but affects much more grid points during winter and summer. In addition to the

Northern Alps, some parts of the Valais and the Grisons are also significantly

overforecast. Even though the observed 90% quantiles mostly remain below 10

mm/day during winter, spring and fall, the overestimation in the model partly

amounts up to 20 mm/day here. Thus, the relative amplitude errors are largest

by far in these areas. In the Ticino, the bias is similar to the Northern Alps

during spring and summer, but it almost vanishes during winter and only is

noticeable at few grid points during fall. A closer look reveals that the bias is
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linked directly to the hillside of the topography. In the northern and central

parts of the Alps, northwest aligned slopes are strongly overforecast whereas

southeast aligned slopes are weakly or moderately underforecast. In the Ticino,

the strongest overprediction resides over southerly oriented slopes, but only ap-

pears clearly during spring and summer and at specific grid points during fall

(Fig. 3d). The deep valleys in the interior of the Alps and their direct sur-

roundings are clearly underforecast. The strongest dry bias is found directly to

the south of the northern Alpine crest. It is most pronounced during summer

with peak values around 20 mm/day (Fig. 3c).

Regardless of the bias, seasonal matching characteristics vary substantially

within Switzerland (Fig. 4). Generally, the regional PSS pattern is noisiest

during summer and smoothest during fall. During winter, the matching clearly

is linked to the topography. Western slopes display much higher PSS values

than their eastern counterparts at that time. In particular, there is a distinct

spatial PSS minimum (Fig. 4a) to the southeast of the highest point in the

northern Alpine crest (marked in Fig. 1). Noteworthy, the best pattern overlap

is found in the Ticino throughout the year. Both during winter and fall, the PSS

locally reaches values over 0.8 in the Ticino corresponding to a POD over 0.82

(see Appendix C, Eq. 8 for this calculation). All over Switzerland, the poorest

matching is detected during summer (Fig. 4c). The PSS barely passes 0.6 in

the Ticino and some places elsewhere and only varies between 0.2 and 0.4 in the

Middleland, the Valais and the Grisons. Note, that a PSS of 0.2 only implies a

POD of 0.28 (see Appendix C, Eq. 8). During equinoctial seasons, the match-

ing is different on both sides of the Alps. The pattern overlap in the Ticino is

poorer during spring compared to fall, even though it is still superior to other

regions. In contrast, it is a little improved in the Valais and the Grisons during

spring compared to fall. On the Alpine north side, there are distinct sectors

20



with PSS values around 0.35 and 0.55 during spring, whereas the matching is

surprisingly uniform with values around 0.5 during fall. The clearest and most

consistent regional separation is found late in the year. During fall, the pattern

overlap is superior in the Ticino, inferior in the Valais and in the Grisons and

middle–rate further to the north. Simultaneously, a prominent PSS gradient is

present to the north of the Ticino and over the northern Alpine crest.

5.2 Regional verification of quantile courses

To detect possible error variations for different intensities, it is necessary to

consider the whole range of quantiles. Therefore, our verification measures are

applied to entire regions. The respective quantiles of the forecasts are given in

Fig. 5 as reference and those of the observations are given in Fig. 2 for compar-

ison of the 90% and 95% quantiles. Most notably, the Northern Alps and the

Ticino stand out, as they mostly display much higher modeled quantiles than

elsewhere. This behavior only partly applies to the observed quantiles which

are considerably lower over the Northern Alps for 90% and 95%. This discrep-

ancy is consistent with our earlier finding that the Northern Alps are highly

overforecast nearby the 90% quantile (Fig. 3). The seasonal variations of high

regional quantiles corresponds relatively well between model and observations.

Figure 6 displays the quantile–based measures QD and PSS for different quan-

tiles. Since the 50% quantiles mostly fall below 0.5 mm per day, dry quantiles

beneath are omitted in the graphs. Concerning the bias, there is the general

tendency that weak intensities are slightly overforecast, medium intensities are

slightly under– or overforecast and strong intensities are strongly overforecast.

However, distinct regions are exceptions from this archetype. On the one hand,

the following domains are severely underforecast for almost all quantiles: the

Jura during winter, spring and fall and the Valais during summer. On the
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other hand, the following domains are greatly overforecast for all quantiles: the

Northern Alps all over the year and the Ticino during spring and summer. In-

terestingly, heavy precipitation in the Ticino is underforecast during winter and

fall. Although the matching is superior for the same cases (Figs. 6d and 4), the

extremely high observed precipitation amounts during fall (Fig. 4d) cannot be

reached by the model.

Concerning the matching, the Ticino mostly holds the highest PSS values com-

pared to the rest of Switzerland. Only low quantiles (nearby 50%) partly match

better in other regions. As opposed to the south, the PSS curve is very similar

in all northern regions, where the distributions of the Jura, the Middleland and

the Northern Alps are close. Only during summer and for low quantiles, PSS

values over the Northern Alps diverge slightly from the regions further to the

west. The skill for weak intensities is slightly reduced and for strong intensities

it is slightly enhanced here. In comparison to northern territories, the PSS is up

to 0.1 worse in the central Alps. Except for stronger intensities during summer,

the pattern overlap always is most critical in the Valais and the Grisons.

5.3 Rating of integral values

To survey the overall model performance with respect to individual seasons and

domains, we discuss weighted error integrals as a condensed view of Fig. 6

(see Appendix B, Eq. 4 and Appendix C, Eq. 9; Tabs. 2 and 3 for further

details). The integral bias (QD′) is highest during winter. QD′ constitutes 0.45

over the Northern Alps which is equivalent to a deviation of over 50%. This

means in this case that all intensities are overestimated on average by half of

their value. At the same time, QD′ amounts to 0.27 and 0.33 over the Jura and

over the Grisons, respectively. This is equivalent to a deviation of over 30%.

On the Alpine south side, the relative bias is highest during spring. The Ticino
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entails a QD′ of 0.36 between March and May which implies a deviation of over

40%. Lowest model biases are observed over the Middleland during spring and

over the Grisons during summer. Interestingly, QD′ only accounts for 0.04 over

the Grisons during summer, meaning that the rainfall distributions only differ

by 4% throughout the domain. The integral matching score (PSS) generally

is lowest during summer. Throughout Switzerland, the integral value is 0.06

lower between June and August than in other months. All over the year, the

PSS is highest in the Ticino. Especially during fall, the integral value is almost

0.2 higher here than for the rest of Switzerland. Other outstanding regions are

the Jura and the Middleland during spring and to a lesser extent the Northern

Alps during winter. These areas exhibit a good matching and rainfall shifts are

comparatively small here. In contrast, the overall worst matching is seen in the

Jura, the Middleland, the Valais and the Grisons during summer as well as to

a slightly smaller extent in the Valais and the Grisons during fall. The lowest

value of 0.34 for the Jura and the Valais during summer corresponds to roughly

75% more mismatching grid points than for the largest value of 0.63 for the

Ticino during winter.

6 Differentiation of model designs

There are three decisive model updates within the preoperational and opera-

tional phase of the COSMO model which possibly affect QPF to a large extent.

First of all, a continuous assimilation cycle (Stauffer and Seaman, 1994) replaced

a pure interpolation of initial values from the driving model. Wind, pressure,

temperature and humidity have been nudged towards surface and upper–air ob-

servations since then. Later, there was a changeover of the driving model at the

boundaries. The COSMO model was driven by the GME in the early stages,

before the IFS has been used in exchange. The switch–over allowed the COSMO
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model to benefit from high–quality features of the ECMWF model such as the

4D Var analysis. Finally, the prognostic precipitation scheme substituted the

diagnostic treatment with the assumption of column equilibrium for precipita-

tion particles. Hence, hydrometeors have been advected by the ambient flow

with different sedimentation velocities for snow and rain.

We apply our refined measures to quantify the impacts that the model updates

had on QPF performance. The four adjacent periods separated by these three

updates are evaluated separately in the following. The first phase (named IGD)

comprises all days between 01/07/2000 and 30/10/2001. It features the interpo-

lation for the initialization, the GME at the boundaries and the diagnostic pre-

cipitation. The second phase (NGD) ranges from 31/10/2001 until 15/09/2003

and features the nudging assimilation. The third phase (NID) uses the IFS in-

stead of the GME boundary fields and covers all days between 16/09/2003 and

15/11/2004. The latest model setup (NIP) runs additionally with the prognostic

precipitation and covers the period between 16/11/2004 and 31/12/2006. Note

that the seasonal composition of the four slices is very similar. Even though

the interannual variability of the errors is strong, we consciously consider all

seasons together to retain reasonable sample sizes. In terms of overall amounts,

IGD entails highest rainfall values in comparison to the phases afterwards. In

particular, there were persistent rainfall episodes from October until November

2000 and from March until April 2001. The former were active on the Alpine

south side and the latter mostly on the Alpine north side.

6.1 Grid–point based verification of 90% quantiles

During IGD, error patterns are significantly noisier than afterwards (Figs. 7a

and 8a). Reasons are found during the first four months of the preoperational

phase, when the model ran without a filtered orography (also pointed out in the
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outlook of Kaufmann et al., 2003). Daily precipitation fields were very spotty

at that time and did not succeed in capturing area–wide rainfall. However,

principal strengths and weaknesses of the COSMO model are already evident in

the primary model setup. The overestimation over the northern Alpine foothills,

the underestimation in the interior of the Alps, the good matching in the Ticino

as well as the poor matching in deep valleys are obvious during IGD. The dry

bias along the low elevations of the Middleland and especially inside the Alps

affects a much larger area than afterwards. More than 40% of all Alpine grid

points over 1500 mMSL are underforecast with an offset worse than 5 mm/day.

However, observed 90% quantiles are roughly 5 mm/day higher than later on,

meaning that the relative offset is comparatively low. The pattern overlap is

most deficient at the western edge of the Valais and over the Jura mountains.

At some grid points, the PSS only constitutes about 0.15 which is equivalent

to a POD around 0.24 (see Appendix C, Eq. 8). The next two phases NGD

and NID are unlike IGD but similar to each other. The percentage of severely

underforecasted grid points over 1500 mMSL only drops down from 20% during

NGD to 14% during NID (Figs. 7b,c). The only outstanding difference is the

temporally diverging matching in the south (Figs. 8b,c). During NGD, the

pattern overlap is average both in the Valais and the Ticino in comparison to

other phases. During NID, it is inferior in the Valais and superior in the Ticino.

Reasons for this disparate trend are not obvious and need to be investigated

in further detail. The matching with the IFS at the boundaries is considerably

better in the Jura and the Middleland than before. In contrast to the central

Alps, the PSS exclusively remains over 0.3 here.

The change of the precipitation scheme implicates the most conspicuous forecast

improvements. Very clearly, the matching improved all over the country (Fig.

8d). During NIP, the PSS varies between 0.3 and 0.8 without exception. Above
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all, the pattern overlap in the main Alpine valleys improves significantly. Former

PSS values around 0.3 rise to values around 0.5 which implicates that the hits

H are 1.5 times more frequent than before. The poorest matching still is seen

throughout the Grisons and over some parts of the northern Alpine ridges.

Aggregated over the Valais, the PSS for the 90% quantiles rises from 0.33 during

NID to 0.54 during NIP. Aggregated over Switzerland, it rises from 0.47 to

0.56. In contrast to the pattern overlap, the bias over the Alps displays an

ambivalent trend during NIP. Precipitation now is advected to areas which

have been underforecast before and maxima of the underestimation are now

diminished. The dry bias rarely falls short of 5 mm/day and does not fall short

of 10 mm/day any more. However, maxima of overestimation are broadened

simultaneously and partly extend to the lee inside the Alps. Peak values of 30

mm/day only drop down to 20 mm/day. Therefore the areal wet bias strongly

worsens over some Alpine slopes and in particular in the center of the Grisons.

Aggregated over the Grisons, the overcharge of the 90% quantiles rises from 0

mm/day during NID to 2.9 mm/day during NIP. Aggregated over Switzerland,

it changes from −0.1 mm/day to 1.6 mm/day.

6.2 Regional verification of quantile courses

Developments of regional error characteristics for a range of rainfall intensities

can be gleaned from Fig. 10. The respective quantiles of the forecasts are

given in Fig. 9 as reference. Most notably, modeled quantiles over the Jura

and the Ticino are highest during IGD, whereas they are standard afterwards.

Astonishingly, the regional bias in the first model setup IGD is remarkably small,

especially for low intensities (Fig. 10a), even though related quantiles display

higher rainfall amounts than afterwards (Fig. 9a). However, it has to be kept in

mind that the aggregated quantile difference does not display local rainfall shifts
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within one region. Thus, a simultaneous overestimation and underestimation

within one domain cancel each other out. Given the noisiness of the IGD field,

this might explain the small QD values. During NGD, regional amplitude errors

increase considerably, above all for lower intensities. Simultaneously, the PSS

rises in all regions considerably. The improvements are largest in the northern

regions. The PSS in the Jura, the Middleland and the Northern Alps is enhanced

by almost 0.1 for small quantiles (∼70%). The alteration stands out least in

the Ticino where the performance already has been very good. Improvements

between NGD and NID are not so clear. In the central Alps, the matching is

insufficient for most quantiles. Above all, the PSS is lowered in the Valais for

quantiles between 75% and 95%. In contrast, the overlap is excellent for almost

all quantiles in the Ticino. In regions to the north, the matching is slightly worse

than before for quantiles below 75%, but it is slightly improved for quantiles

above. Considering NIP, improvements for all quantiles are remarkable. The

values of the PSS only slightly drop off towards high quantiles. The performance

for 60%, 70% and 80% quantiles is very similar now. However, an increase of

the overestimation is also obvious for all quantiles. Merely the flat Middleland

remains almost bias–free. The amplitude error in the Ticino remains, but it is

drastically increased to the north. In particular, low and medium intensities are

now significantly overforecast in all Alpine areas. For example, the 70% quantile

offset increased in the Northern Alps from 0.6 mm/day to 1.8 mm/day. Note,

that the 70% quantiles roughly correspond to 3 mm/day in the observations.

6.3 Rating of integral values

The integrated scores recapitulate the QPF behavior explained above. The

integral performance strongly depends on regional characteristics and QPF im-

provements deeply vary among the domains. The average quantile difference
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(Tab. 4) clearly increases over the Jura between IGD and NGD. QD′ rises from

0.07 to 0.29 implying that relative deviations increased from 7% to almost 35%

along the rainfall distributions. At the same time, amplitude errors level off

over the Middleland and diversely changed over the Alps. However, the most

conspicuous worsening of the bias is obvious during NIP. All over Switzerland

QD′ rises from 0.09 to 0.22 implying that deviations grow from 9% to 25%.

None of the Alpine regions has its lowest QD′ value in the last period with the

most sophisticated model version. The change is most critical over the Ticino

and the Grisons where QD′ rises from 0.14 to 0.30 and from 0.07 to 0.37, respec-

tively. The bias only improves over the Jura and the Middleland at the time.

Interestingly, QD′ continuously increases within the four phases for the North-

ern Alps. The value rises from 0.16 during IGD to 0.38 during NIP. Concerning

PSS (Tab. 5), QPF performance is best for the latest model version. Except

for the Ticino, where the pattern overlap already has been superior before, all

regions display their highest PSS during NIP. Thus, the great improvement of

advecting precipitation by the ambient flow is brought out clearly by the sum-

mary measure. Considering all phases, the matching is upgraded most in the

Jura and the Valais where PSS rises by almost 0.2 between IGD and NIP.

7 Interpretation of verification results

Some aspects are worthwhile noting in the interpretation of our results. Firstly,

the observational precipitation analysis is not perfect. In particular, it exhibits

a negative bias (too low values) due to systematic measurement errors. In the

Alpine region, these biases are less than 12% from spring to fall, but can reach

several tens of percent in winter for exposed stations above 1500 mMSL (Sevruk,

1985, Richter, 1995). While these biases may possibly explain some part of the

apparent quantile overestimation in winter, the overall characteristics of the
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model errors remain valid. The magnitude of the model bias is substantially

larger than expected measurement biases. Note that only about 10% of the

rain-gauge stations are at elevations above 1500 mMSL even in inner Alpine

regions (see e.g. Fig. 6 in Frei and Schär, 1998) and hence the bias in the

observational analysis is much smaller than that at exposed stations. Moreover,

our primary focus is on high quantiles (i.e. intense rainfall or heavy snowfall)

for which the measurement bias is considerably smaller than for light events.

Generally, our verification results agree with those found by Elementi et al.

(2005) in case studies. First and foremost, the severe overestimation at the

Alpine fringe is confirmed. The COSMO model versions under consideration

seem to have problems to represent the correct flow and moisture field around

orography. The windward side receives too much and the lee side too little pre-

cipitation. This behavior is most pronounced with the diagnostic precipitation

scheme, but still holds for the prognostic scheme. Further investigations (not

shown) have proven that the overestimation mostly stems from the resolved

part of the total rainfall (see Kaufmann et al., 2003, for comparison) which

holds especially for very strong events. Recent tests with the COSMO model

revealed that a three–step Runge–Kutta time integration scheme (Wicker and

Skamarock, 2002) partly rectifies the overestimation on the windward side of a

mountain (D. Leuenberger (MeteoSwiss), pers. comm.). However, it remains

ambiguous, how inconsistencies of the used leapfrog scheme affect the formation

of precipitation and cause the offsets on the windward side.

Concerning the bias, the overestimation is most pronounced over higher eleva-

tions during winter. Even though the results are slightly falsified by winter-

time measurement errors, snowfall seems to be more overstated than rainfall.

This can be attributed to problems with the cloud ice scheme for the winters

2003/2004 and 2004/2005 (F. Schubiger (MeteoSwiss), pers. comm.).

29



Interestingly, the common bias pattern does not always hold for the Alpine

south side. In opposition to the findings discussed above, there is a slight dry

bias over the Ticino during winter and fall. Obviously, a drying of the water

cycle is superimposed to the usual overestimation of precipitation on the Alpine

fringe. Comparisons of COSMO forecasts and COSMO analyses revealed that

forecasts over the Po valley tend to be significantly dryer than in the correspond-

ing assimilation cycle. Apparently, the water balance in the COSMO model is

predisposed to leak over the northwest of Italy. However, the cause of this is

not clear and requires further investigation.

A positive correlation between the quantile difference and the PSS can be con-

firmed statistically for the diagnostic precipitation scheme. In other words, the

PSS usually is higher for positive quantile differences than for negative ones.

The reason is the absent horizontal transport of hydrometeors which produces

both an underestimation and a poor matching on the lee side of mountains.

By introducing the prognostic precipitation scheme, this correlation vanishes.

The bias no longer interferes significantly with the matching and a main error

source which affected both verification components seems to be removed. Note

that this behavior only is proven so clearly, because all intensities are related to

quantiles/frequencies and not to amplitudes.

At the same time, a significant worsening of the wet bias is evident during the

latest model phase. In particular over the Ticino and the Grisons, the relative

offset of the distributions in comaparison increased drastically. Most notably,

southerly flow now entails a much higher wet bias than before. Possible ex-

planations relate to unmentioned model updates like a change of the cloud ice

scheme, the introduction of prognostic turbulent kinetic energy or the switch of

the IFS boundary fields to higher resolutions. Again, implications of verification

results do not transfer directly to model diagnosis and the original error source
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remains to be investigated.

One of the most outstanding findings is the high quality of the pixel overlap

on the Alpine south side. As shown in section 5, the pattern overlap in the

Ticino is much better than elsewhere. The matching disparity to other regions

is present throughout the year and throughout all model versions. It is most

manifest for strong intensities and most pronounced during winter and fall (Figs.

6a,d). Explanations are found in the special geographical position of southern

Switzerland in connection to the prevailing synoptic flow patterns. Meridion-

ally aligned stratospheric intrusions determine the large–scale predictability of

heavy precipitation (Fehlmann and Quadri, 2000) and primarily support the ob-

served enhanced pixel overlap during fall. The relief of the Ticino is uniformly

aligned to the south and lee effects play a minor role for a southerly flow. The

high predictability also is supported by idealized model simulations of Gheusi

and Davies (2004). They found that precipitation distributions near the Lago

Maggiore are comparatively insensitive to the changes in direction and speed of

the incident flow from south to southwest i.e. from 10 to 30 m/s. In addition

to its favorable exposure to the south, the Ticino is shielded by the Alpine crest

for northerly flow directions. Embedded shallow fronts provide a potential for

misforecasts on the windward side, but are obstructed by the Alpine crest and

do not affect the Ticino (E. Zala (MeteoSwiss), pers. comm.). Their frequency

maximum on the windward side during the cold season (Jenkner et al., 2008)

supports this explanation for an enhanced wintertime pixel overlap in the Ti-

cino.

Concerning the seasonal cycle, it is obvious that the pixel overlap is highest

during winter (in some regions also during fall) and lowest during summer.

In this regard, model performance strongly anti–correlates with the amount of

convective precipitation or likewise with the boundary layer height. The depen-
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dency emerges clearly in our results and is worthwhile mentioning, even though

convection schemes are already well–known to present difficulties to QPF (e.g.

Elementi et al., 2005). The interaction of the boundary layer and the free

atmosphere is well–developed during the convective season and challenges the

interplay of parameterized and resolved processes in today’s models. The final

outcome is a degradation of the local skill in convective situations.

8 Summary

In the present study a novel treatment of the traditional categorical verifica-

tion has been presented. By using frequency thresholds instead of amplitude

thresholds, deterministic verification applications strongly benefit from inherent

advantages. We recommend to use the absolute or relative quantile difference

to describe the bias and the Peirce skill score to describe the pattern overlap.

In this way, the total error is split up into an amplitude part and a matching

part. If multiple quantiles are taken into account, spectral performance can

be assessed. This setup allows for a meaningful juxtaposition of different value

ranges and renders possible a meaningful evaluation of individual intensities. In

this context, our distribution–oriented approach makes a decisive step towards

equitable scores, as defined by Gandin and Murphy (1992). In our opinion, it is

more meaningful for model developers to relate verification results to character-

istic numbers of the model output (e.g. quantiles) than to a priori fixed limits.

The main advantages and challenges of the refined approach are itemized here

for recapitulation:

• The degrees of freedom within the contingency table reduce to one. The

information content can be displayed by a single score.

• Owing to the use of quantiles, the conducted debiasing has a physical
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validity and only relates to the characteristics of the distributions under

comparison. A commensurate calibration cannot be achieved so easily by

other approaches.

• The whole range of precipitation intensities can be assessed by looping over

quantiles. Different value ranges are related to each other in an expedient

and consistent way.

• The Peirce skill score strongly simplifies with the use of quantiles and is

no longer susceptible to hedging.

• Synoptic biases or gridding errors do not influence the matching error

score, if they are applied to homogenous subsets (in our case orographically

distinct areas) with a consistent bias behavior.

• Scores can be integrated over all quantiles while weighting them accord-

ingly. Total performance is condensed meaningfully in a single number.

• As a slight drawback, quantiles universally are less intuitive than fixed

thresholds. A verification which is issued to the public mostly requires

values to be linked to proper rainfall amounts.

The methodology has been applied to 6.5 year of preoperational and operational

forecasts from the Swiss implementation of the COSMO model. Seasons and

model versions have been evaluated separately. 90% quantiles have been in-

vestigated in detail and quantile courses have been discussed for six predefined

regions. The most important results are recapitulated in the following:

• Regional QPF performance strongly is determined by local orography in

connection with the impinging flow direction. Distinct areas with a good

and poor pattern overlap can be identified. The fine–scale error structure

emerges most clearly during winter.
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• The COSMO model exhibits a persistent overestimation over the Alpine

foreland and a transient underestimation over interior valleys (primarily

during winter and summer and with the diagnostic precipitation scheme).

The Alpine south side partly is an exception with comparatively low sea-

sonal amplitude errors during winter and fall.

• Overall matching characteristics are worst during summer. All over Switzer-

land, the pattern overlap is roughly 6–7% worse during summer than dur-

ing the rest of the year. Seasonal dispartities are even higher over the Jura

and the Ticino. Altogether, the matching is worst over the Jura and the

Valais during summer.

• The skill is much higher on the Alpine south side than on the north side.

On average, the pattern overlap is roughly 15% better over the Ticino

than elsewhere.

• The matching continously improves within the validated period and can be

clearly attributed to updates of the COSMO model. All over Switzerland,

the pattern overlap is 12% better in the latest considered phase than in

the first one.

• The overall bias is worst by far in the latest considered phase. The relative

amplitude error constitutes about 9% between 2000 and 2004, but it rises

to 25% between 2005 and 2006.

The steep orography in Switzerland imposes a severe constraint on QPF perfor-

mance. The discussed QPF errors presented here exhibit a strong dependency

on weather patterns with specific flow features in conjunction with the complex

terrain. Thus, it is instructive to study model performance with respect to dif-

ferent synoptic situations. Such a study will be conducted with a consistent

model version in a follow–up paper.
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A Quantile–oriented binary contingency tables

The entries of the standard 2x2 contingency table (Tab. 1) are defined by means

of sample quantiles instead of a preassigned threshold value. Thus, the marginal

distributions (H+F, Z+M, etc.) are fixed automatically. If the same quantile

probability is chosen for the model and the observations (p ≡ pmod = pobs), the

event frequency is the same in both datasets. Two additional interrelations are

incorporated in the conceptual formulation:

M = F M + Z = pN (1)

Firstly, the misses M equal the false alarms F and the bias automatically is

removed from subsequent considerations. Secondly, the quantile probability p

by definition sets the base rate to 1 − p and divides the sample into (1 − p)N

events and pN non-events. Thus, all four entries H, M, F and Z additionally

are linked to p itself. Since the sample size N=H+M+F+Z is given, the four

incidences are connected by a total of three constraints. Only one degree of

freedom is left and uniquely describes the joint distribution.

The determination of p imposes stringent restrictions on the valid range of the

four entries in the contingency table. Depending on p, the four counts only

vary within a limited span (Fig. 11). If the quantile probability is below 0.5,
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there are always some hits H by definition, as exceeding events cover more than

half of the sample. If the quantile probability is above 0.5, there are always

some correct negatives Z by definition, as exceeding events cover less than half

of the sample. The misses M and false alarms F consistently are limited at the

top. They are restricted either by the number of non-events (p < 0.5) or by the

number of events (p > 0.5). Just in case of the median (p = 0.5), all four counts

hold the same range of values. Then the setting is balanced and the number of

hits H by definition equals the number of correct negatives Z.

A random forecast divides the joint distribution into a region with skill and one

without skill. The borderline is (1 − p)2N for the hits, (p − p2)N for the misses

or false alarms and p2N for the correct negatives (Fig. 11). Thus, a valuable

forecast always exhibits less than (p − p2)N misses or false alarms respectively.

In case of the median (p = 0.5), the border consistently resides at N/4 which is

in the center of valid ranges. It gradually approaches a margin for p converging

towards 0 or 1.

B Quantile differences

Certain sample quantiles are useful in an exploratory rainfall verification. Even

though the quantile–quantile plot is useful in small datasets, it is beneficial to

map quantile differences in gridded samples (Ferro et al., 2005). In our context,

the quantile difference directly exhibits a distinctive amplitude error (i.e. bias

between the datasets):

QD(p) = qmod(p) − qobs(p) (2)

As an option, QD can also be standardized by individual quantiles. Similar to

the definition of the amplitude component of the SAL measure (Wernli et al.,
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2008), the scaling of the error preferably is done by the arithmetic mean of the

observation and the forecast:

QD′(p) =
2 QD(p)

qobs(p) + qmod(p)
(3)

As a matter of fact, QD describes the absolute quantile difference whereas QD′

describes the relative quantile deviation. Note that QD′ varies between −2 and

2. A positive QD or QD′ corresponds to a wet bias i.e. an overestimation of

precipitation. A negative QD or QD′ stands for a dry bias i.e. an underestima-

tion of precipitation. As the case may be, it is more convenient to display QD

or QD′.

However, it is advisable to use the relative quantile deviation to express the

overall performance over all precipitation magnitudes. The weighted average

over all quantiles accounts for the collective rainfall deviation. The integral

preferably is computed with the absolute value, because deviations with a vary-

ing sign cancel out in the average. Since the quantile difference originally is an

additive quantity, we use the arithmetic mean of observed and modeled quantiles

as weighting function:

QD′ =
1

∫

w(p)dp

∫

1

0

w(p)|QD′(p)| dp w(p) =
qobs(p) + qmod(p)

2
(4)

Note that QD′ only varies between 0 and 2. Amplitude deviations of 5%, 10%,

20%, 40% and 80% lead to QD′ values of 0.049, 0.095, 0.182, 0.333 and 0.571,

respectively. The lower the value of QD′ the more alike are the compared

distributions in terms of intensities and the smaller is the overall amplitude

error.
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C The Peirce skill score with quantiles

The Peirce skill score (Peirce, 1884) can be reformulated with an offset for

selected quantile probabilities dp = pmod−pobs with pmod and pobs denoting the

quantile probabilities of the chosen amplitude threshold:

PSS(p) =
H

H + M
−

F

F + Z
= 1 −

M

(pobs − p2

obs)N
−

dp

pobs
(5)

Hence, a possible bias (dp) changes the PSS more intensely for large base rates

(1 − pobs) than for small ones. The problem of hedging results from the fact

that people may change pmod while pobs remains fixed. However, it is eluded,

if quantile probabilities coincide to each other (p ≡ pmod = pobs, see Appendix

A for details) and a change of pmod always implicates a change of pobs. Several

skill scores merge into each other in that situation. In particular, the Peirce

skill score (Peirce, 1884) gets equal to the Heidke skill score (Heidke, 1926) and

the Clayton’s skill score (Clayton, 1934). Its formula further simplifies to:

PSS(p) = 1 −
M

Mrand
Mrand = (p − p2)N (6)

The symmetry of the random misses Mrand (see Fig. 11b for visualization) as-

certains the PSS to be invariant with respect to taking the complement of the

events (see Stephenson, 2000, for details). Therefore it is equivalent to define

the quantiles going upward or downward along the distribution. In addition,

a swapping of forecasts and observations is allowed in our setup and the PSS

fulfills the requirements for transpose symmetry (see Stephenson, 2000, for def-

inition).

Positive PSS–values indicate skill compared to a shuffled sample, since a ran-

dom forecast results in PSS= 0 at all times. Owing to the limited range of the

four entries in the contingency table (see Appendix A for details), the PSS only
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varies between 1 − 1/(1 − p) and 1 for p ≤ 0.5 or accordingly between 1 − 1/p

and 1 for p ≥ 0.5. Different probabilities for a complete miss of all events are

included in the concept and it is not possible to score much worse than coinci-

dence in the case of rare events or rare non-events.

Using the definitions introduced by Gandin and Murphy (1992) the PSS can be

computed in different ways corresponding to the four entries of the matrix prod-

uct between the symmetric scoring matrix S and the symmetric performance

matrix P:

SP =







1/p −1/p

−1/(1− p) 1/(1− p)






PSS(p)

S =







p/(1 − p) −1

−1 (1 − p)/p






P =

1

N







H M

M Z







(7)

To interpret the PSS, it can be additionally transformed into the POD. However,

the convenient characteristics of the PSS are then lost:

POD(p) = 1 − p (1 − PSS(p)) (8)

Individual PSS values can be integrated to express the overall matching per-

formance. The weighted average over all quantiles accounts for the collective

skill. Since PSS is a multiplicative quantity, the geometric mean of observed

and modeled quantiles is used as weighting function:

PSS =
1

∫

w(p)dp

∫

1

0

w(p) PSS(p) dp w(p) =
√

qobs(p)qmod(p) (9)

The higher the value of PSS the larger is the pixel overlap and the smaller is

the overall permutation error.
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D The uncertainty of results

Essentially, the estimation of the sample quantiles is sensitive to the available

dataset (e.g. Conover, 1980). Since rainfall distributions usually are highly

skewed, there are only some nonparametric methods to quantify the uncertainty

of the computed quantiles. A convenient approach is described by Conover

(1980). If a dataset is considered independent and identically distributed, the

binomial distribution describes the probability that a single data point consti-

tutes the targeted quantile. Confidence intervals are obtained directly, if border

quantiles are taken from the following range [r, s] in the order statistics:

r = Np + yα/2

√

Np(1− p) s = Np + y1−α/2

√

Np(1 − p) (10)

Intrinsically, yα/2 and y1−α/2 denote quantiles of the binomial distribution and

Np(1 − p) represents its variance. If N is sufficiently large, the central limit

theorem can be applied. Then yα/2 and y1−α/2 can be taken from the standard

normal distribution.

Let us exemplify the proceeding of Conover (1980) by means of the highest

evaluated quantile in the smallest and the largest regional sample. The Jura

only encompasses N= 23485 data items during the period NID (427 days ×

55 grid points, see section 6 for details). Observed and modeled 99% quantiles

correspond to 38.4 mm and 27.2 mm respectively. Following the explained

method, the confidence interval (95% significance level) ranges from r = 23220

to s = 23280 which implies [37.4 mm, 39.5 mm] and [25.5 mm, 28.7 mm]. In

contrast, the Middleland encompasses N= 210296 data items during the period

NIP (776 days × 271 grid points, see section 6 for details). Observed and

modeled 99% quantiles correspond to 29.4 mm and 33.6 mm respectively. The

confidence interval now ranges from r = 208104 to s = 208283 which implies
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[29.1 mm, 29.8 mm] and [33.1 mm, 34.2 mm]. On account of the larger sample,

the uncertainty is much smaller in the second case.

According to the error itself, the overall sample uncertainty subdivides into

two different parts. One portion relates to the bias and another one relates

to the pixel overlap. On the one hand, the estimation of quantiles directly

affects the uncertainty of the quantile difference. Basically, variances add up to

that of the difference. On the other hand, the determination of matching and

non–matching pixels affects the uncertainty of the Peirce skill score. Hanssen

and Kuipers (1965) derived the variance of the PSS by means of parametric

assumptions. In our notation, it looks like:

var(PSS(p)) =
1

N

(

1

4p(1 − p)
− PSS(p)2

)

(11)

Following equation 11, the uncertainty of the PSS is highest for extreme quan-

tiles and PSS values close to zero. In contrast, it is lowest for quantiles around

the median and PSS values close to 1.

Strictly speaking, the spatial correlation among individual grid points is crucial

and must be maintained while estimating uncertainties of regional scores. In

contrast, individual days are approximately independent from each other. Thus,

meaningful confidence intervals are obtained by fixing the spatial configuration

and varying the temporal composition. Proper resampling methods are ex-

plained by Ferro et al. (2005). We applied a bootstrap with 500 repetitions and

computed quantile–based confidence intervals. That means we resampled avail-

able days with replacement and used ordinary quantiles to determine confidence

limits. Once again, we use the Jura during NID and the Middleland during NIP

for illustration purposes (Fig. 12). The uncertainty generally is much smaller in

the larger sample. Confidence intervals of the quantile difference tend to spread

when moving to higher quantiles, because they are not scale–invariant. The
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uncertainty of the Peirce skill score only slightly increases for rare events which

is in contrast to a conventional computation based on amplitude thresholds.
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Figure 1: Subdivision of Switzerland into six orographically distinct areas: Jura,
Middleland, Northern Alps, Valais, Ticino, Grisons. Square dividing lines indi-
cate the margins of the COSMO grid points. Highest mountain formations are
marked with an X.

observed yes observed no
predicted yes H F
predicted no M Z

Table 1: 2x2 Contingency table with hits H, misses M, false alarms F and correct
negatives Z.
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Figure 2: Observational sample probabilities of exceedance of daily rainfall sum
in the six different sub–regions defined in Fig. 1: winter (a), spring (b), summer
(c) and fall (d). A frequency of 1% corresponds to a marginal day during one
season. Frequencies are tantamount to quantiles, as the latter define the limit
which a predetermined proportion of the data falls below. For instance, the 90%
and the 95% quantiles directly can be read off, if the frequencies of exceedance,
namely 10% and 5% (solid horizontal lines), are converted to proper rainfall
amounts.
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Figure 3: Difference of 90% quantiles (COSMO–observations) of daily pre-
cipitation sums [mm/day]: winter (a), spring (b), summer (c) and fall (d).
Lightly hatched grid points indicate observed 90% quantiles over 10 mm/day and
densely hatched grid points indicate observed 90% quantiles over 20 mm/day.

45



0.2

0.3

0.4

0.5

0.6

0.7

0.8

DJF

a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAM

b)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

JJA

c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SON

d)

Figure 4: Peirce skill score for 90% quantiles of daily precipitation sums [1:
perfect, 0: random forecast]: winter (a), spring (b), summer (c) and fall (d).
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Figure 5: Modeled daily precipitation amounts [mm/day] for discrete quantile
probabilities: winter (a), spring (b), summer (c) and fall (d).
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Figure 6: Area–average of the quantile difference (gray, left scale) [mm/day] and
the Peirce skill score (black, right scale) for quantiles between 50% and 99%:
winter (a), spring (b), summer (c) and fall (d).
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Jura Middlel. N. Alps Valais Ticino Grisons CH

winter 0.27 0.13 0.45 0.18 0.15 0.33 0.24

spring 0.17 0.08 0.25 0.16 0.36 0.22 0.13

summer 0.10 0.13 0.23 0.24 0.30 0.04 0.11

fall 0.22 0.13 0.19 0.12 0.11 0.22 0.06

Table 2: Weighted integral QD′ values for different domains and seasons. The
scaling shows the relative amplitude deviation and is explained in appendix B
[0.1: 10.5% deviation, 0.2: 22.2% deviation, 0.3: 35.3% deviation]. The darker
the shading the higher are overall observed amounts.

Jura Middlel. N. Alps Valais Ticino Grisons CH

winter 0.48 0.46 0.46 0.41 0.63 0.43 0.46

spring 0.49 0.47 0.43 0.38 0.56 0.41 0.45

summer 0.34 0.36 0.41 0.34 0.47 0.36 0.39

fall 0.43 0.46 0.43 0.38 0.60 0.38 0.46

Table 3: Weighted integral PSS values for different domains and seasons. The
darker the shading the higher are overall observed amounts.
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Figure 7: Difference of 90% quantiles (COSMO–observations) of daily precip-
itation sums [mm/day]: IGD (a), NGD (b), NID (c) and NIP (d). Lightly
hatched grid points indicate observed 90% quantiles over 10 mm/day and
densely hatched grid points indicate observed 90% quantiles over 20 mm/day.
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Figure 8: Peirce skill score for 90% quantiles of daily precipitation sums [1:
perfect, 0: random forecast]: IGD (a), NGD (b), NID (c) and NIP (d).
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Figure 9: Modeled daily precipitation amounts for discrete quantile probabilities
[mm/day]: IGD (a), NGD (b), NID (c) and NIP (d).
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Figure 10: Area–average of the quantile difference (gray, left scale) [mm/day]
and the Peirce skill score (black, right scale) for quantiles between 50% and
99%: IGD (a), NGD (b), NID (c) and NIP (d).
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Jura Middlel. N. Alps Valais Ticino Grisons CH

IGD 0.07 0.13 0.16 0.18 0.14 0.22 0.07

NGD 0.29 0.07 0.26 0.23 0.15 0.19 0.09

NID 0.28 0.12 0.28 0.08 0.14 0.07 0.09

NIP 0.13 0.07 0.38 0.17 0.30 0.37 0.22

Table 4: Weighted integral QD′ values for different domains and periods. The
scaling shows the relative amplitude deviation and is explained in appendix B
[0.1: 10.5% deviation, 0.2: 22.2% deviation, 0.3: 35.3% deviation]. The darker
the shading the higher are overall observed amounts.

Jura Middlel. N. Alps Valais Ticino Grisons CH

IGD 0.34 0.38 0.37 0.30 0.49 0.34 0.39

NGD 0.40 0.38 0.39 0.32 0.58 0.35 0.40

NID 0.44 0.42 0.44 0.34 0.61 0.39 0.44

NIP 0.52 0.52 0.51 0.49 0.59 0.48 0.51

Table 5: Weighted integral PSS values for different domains and periods. The
darker the shading the higher are overall observed amounts.
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Figure 11: Possible entries (gray shaded) and random expectation values (thick
black lines) of the four entries in the 2x2 contingency table: a) hits H, b) misses
M or false alarms F, c) correct negatives Z. The x–axis displays the range of
quantile probabilities p whereas the y–axis shows the proportion of the sample
size H/N, M/N or F/N and Z/N.
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Figure 12: Examples for 95% confidence intervals (lines without markers) ob-
tained from a bootstrap sample with 500 repetitions for the quantile difference
(gray, left scale) [mm/day] and the Peirce skill score (black, right scale): The
Jura during NID (16/09/2003 until 15/11/2004, 427 days) and the Middleland
during NIP (16/11/2004 until 31/12/2006, 776 days) are displayed.
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