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Traditional point-to-point verification is more and more superseded
by situation-based verification such as an object-oriented mode. One
main reason is that difficulties are encountered while interpreting the
outcome of a conventional contingency table based on amplitude
thresholds. Firstly, a predetermined amplitude threshold splits the
distributions under comparison at an unknown location. In an extreme
case, single entries of the contingency table can become zero. Then
some scores cannot be computed (due to a division by zero) and
statements about model behavior are hard to make. Secondly, the
distributions under comparison usually differ considerably with
respect to their range of values. Customary scores do not fulfill the
requirements for equitability (Gandin and Murphy, 1992) and fail to
be firm with respect to hedging (Stephenson, 2000). Thirdly, the joint
distribution usually comprises multiple degrees of freedom. In the
case of a 2x2 amplitude-based contingency table, three linearly
independent scores are needed to display all verification aspects
(Stephenson, 2000). It is possible to draw complementary information
from the considered datasets, if concurrent scores are applied
simultaneously. But it remains unclear, how to attribute individual
verification aspects to measures which are not totally independent
from each other. Fourthly, it is not meaningful to integrate amplitude-
based scores over a range of intensities. Averages over multiple
thresholds are difficult to interpret, because it is not obvious how
many data points fall within individual ranges of thresholds.

To counteract the addressed drawbacks of categorical statistics,
frequency thresholds 1.e. quantiles, can be used instead of amplitude
thresholds to define the contingency table. Then two additional
interrelations are automatically included into the conceptual
formulation:
false alarms = misses misses + correct negatives = pN

Note that p denotes the quantile probability (0 <p < 1) and N stands
for the sample size. Due to the first equation, the contingency table
benefits from a calibration and is not influenced by the bias any more.
The problem of hedging is eluded, because it is no longer possible to
change the number of forecasted events without adjusting the number
of observed events. Due to the second equation, the base rate (1-p) is
fixed a priori and determines the rarity of events. The single



remaining degree of freedom uniquely describes the joint distribution.
Thus, it is now possible to describe the forecast accuracy or the skill
related to individual intensities by means of a single score.

Depending on the quantile probability, the four entries of the
contingency table only vary within a limited span (Fig. 1). If the
quantile probability is below 0.5, there are always some hits by
definition. If the quantile probability is above 0.5, there are always
some correct negatives by definition. The misses and false alarms are
consistently limited at the top. They are restricted either by the
number of non-events (p < 0.5) or by the number of events (p > 0.5).
A random forecast imposes strongly varying frequencies for all
entries in the contingency table. A score is preferably independent

from all variations caused by the base rate.
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Figure 1: Possible entries (gray shaded) and random expectation
values (thick black lines) of the four entries in the 2x2 contingency
table: a) hits, b) misses or false alarms, c) correct negatives. The x-axis
displays the range of quantile probabilities and the y-axis shows the
number of data points.

The Peirce Skill Score (PSS, equivalent to the True Skill Statistics
and the Hanssen-Kuipers Discriminant) is able to measure skill
without being perturbed by the base rate (e.g. Woodcock, 1976,
Mason, 1989). Thus, the PSS is ideally suited to measure the joint
distribution, i.e. to display the forecast accuracy on its own. Owing to
the definition of a quantile, the computation of the PSS simplifies to:

PSS =1 — misses/misseS,ung misseSang = (p — pz)N
To complement the verification, the bias is represented by the
absolute (abs) or relative (rel) quantile difference (QD):

QDabs = (mod — obs QDrel = 2Q])abs/(qobs + qmod)

Note that qqps and gmoq denote the observed and modeled (forecasted)
quantile values, respectively. QD,, is computed according to the
amplitude component in the SAL measure (Wernli et.al., 2008). The
value therefore varies between -2 and +2. The QD and the debiased
PSS split the total error into the independent components of bias and
accuracy. Together, they provide a complete verification set with the
ability to assess the whole range of intensities along the distributions
under comparison.



The conventional PSS (with amplitude thresholds) cannot distinguish
between an amplitude error and a shift error. Only the quantile-based
contingency table provides the opportunity to distinguish between the
two types of errors. The new concept can be exemplified by means of
a simple forecast paradigm. Consider a constructed forecast problem
with daily rainfall amounts for 8 days (Fig. 2). The observed
distribution (Obs.) is symmetric and peaks on day 4 and 5. A first
forecaster (Fcst 1) is able to estimate the right amounts, but predicts
the rainfall one day too late, meaning that his forecast exhibits a shift
error. A second forecaster (Fcst 2) is able to estimate the right timing,
but overpredicts the rainfall by 2 mm/day, meaning that his forecast
exhibits a bias. We want to compare both forecasts by means of the
PSS now. The conventional PSS is applied with an amplitude
threshold (AT) of 3 mm/day. The result is an equal scoring of PSS =
0.5 for both forecasters. Thus, both forecasts show the same
performance, but we cannot assess the error type. The debiased PSS is
applied with a frequency threshold (FT) of 50%. The result is still
PSS = 0.5 for the first forecaster, but it is raised to PSS = 1 for the
second forecaster. Since the bias is disregarded in the PSS now, the
second forecast is rated optimal. To account for the amplitude error,
the quantile difference is evaluated. It constitutes QD,,s = 0 mm, i.e.
QD = 0, for the first forecast. Likewise, it constitutes QD5 = 2 mm,
1.e. QD = 0.5, for the second forecast. It is now possible to clearly
distinguish between a shift error and a bias. Thus, room for additional
insights 1s provided.

8l Obs. 8t Fest 1 8l Fcst 2

6|

FT

4

mm/day
mm/day

AT

2

Figure 2: Forecast paradigm of forecasting rainfall amounts for 8
days: Observations (left), first forecast (middle), second forecast
(right). The first forecast exhibits a pure shift error of 1 day. The
second forecast exhibits a pure bias with an overestimation of 2
mm/day. The selected amplitude threshold (AT) constitutes 3
mm/day. The selected frequency threshold (FT) corresponds to the
50% quantile.

To aggregate the scores over intensities, weighted averages can be
computed over quantiles. Thereby, QD is integrated with its
absolute value, because individual quantiles with an over- and
underestimation can cancel each other out otherwise. The weights
w(p) correspond to the arithmetic and the geometric mean for the
QD, and the PSS, respectively:
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A convenient advantage of using quantiles is a stabilization of the
sample uncertainty for rare events. Bootstrap confidence intervals for
the PSS reveal that the uncertainty usually only slightly increases
while moving towards extreme quantiles. Quantile probabilities
inherently are not affected by amplitude uncertainties, but their
transformation to quantile values, i.e. corresponding amplitudes,
suffers from ambiguities. We can achieve a high confidence for the
PSS value for a certain quantile, but still hold a low confidence for
the quantile estimation. However, since arbitrary amplitudes are not
related to the sample distribution, it is sometimes useful only to
consider quantiles, corresponding for example to return periods of
extreme rainfall events.

An elaborate description of the methodology as well as an application
to daily rainfall forecasts of the COSMO' model over Switzerland can
be found in Jenkner et.al. (2008).
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