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Traditional point-to-point verification is more and more superseded 
by situation-based verification such as an object-oriented mode. One 
main reason is that difficulties are encountered while interpreting the 
outcome of a conventional contingency table based on amplitude 
thresholds. Firstly, a predetermined amplitude threshold splits the 
distributions under comparison at an unknown location. In an extreme 
case, single entries of the contingency table can become zero. Then 
some scores cannot be computed (due to a division by zero) and 
statements about model behavior are hard to make. Secondly, the 
distributions under comparison usually differ considerably with 
respect to their range of values. Customary scores do not fulfill the 
requirements for equitability (Gandin and Murphy, 1992) and fail to 
be firm with respect to hedging (Stephenson, 2000). Thirdly, the joint 
distribution usually comprises multiple degrees of freedom. In the 
case of a 2x2 amplitude-based contingency table, three linearly 
independent scores are needed to display all verification aspects 
(Stephenson, 2000). It is possible to draw complementary information 
from the considered datasets, if concurrent scores are applied 
simultaneously. But it remains unclear, how to attribute individual 
verification aspects to measures which are not totally independent 
from each other. Fourthly, it is not meaningful to integrate amplitude-
based scores over a range of intensities. Averages over multiple 
thresholds are difficult to interpret, because it is not obvious how 
many data points fall within individual ranges of thresholds.  
 
To counteract the addressed drawbacks of categorical statistics, 
frequency thresholds i.e. quantiles, can be used instead of amplitude 
thresholds to define the contingency table. Then two additional 
interrelations are automatically included into the conceptual 
formulation: 

false alarms = misses        misses + correct negatives = pN 
Note that p denotes the quantile probability (0 < p < 1) and N stands 
for the sample size. Due to the first equation, the contingency table 
benefits from a calibration and is not influenced by the bias any more. 
The problem of hedging is eluded, because it is no longer possible to 
change the number of forecasted events without adjusting the number 
of observed events. Due to the second equation, the base rate (1–p) is 
fixed a priori and determines the rarity of events. The single 



remaining degree of freedom uniquely describes the joint distribution. 
Thus, it is now possible to describe the forecast accuracy or the skill 
related to individual intensities by means of a single score.  
Depending on the quantile probability, the four entries of the 
contingency table only vary within a limited span (Fig. 1). If the 
quantile probability is below 0.5, there are always some hits by 
definition. If the quantile probability is above 0.5, there are always 
some correct negatives by definition. The misses and false alarms are 
consistently limited at the top. They are restricted either by the 
number of non-events (p < 0.5) or by the number of events (p > 0.5). 
A random forecast imposes strongly varying frequencies for all 
entries in the contingency table. A score is preferably independent 
from all variations caused by the base rate.         

 
Figure 1: Possible entries (gray shaded) and random expectation 
values (thick black lines) of the four entries in the 2x2 contingency 
table: a) hits, b) misses or false alarms, c) correct negatives. The x-axis 
displays the range of quantile probabilities and the y-axis shows the 
number of data points. 

 
The Peirce Skill Score (PSS, equivalent to the True Skill Statistics 
and the Hanssen-Kuipers Discriminant) is able to measure skill 
without being perturbed by the base rate (e.g. Woodcock, 1976, 
Mason, 1989). Thus, the PSS is ideally suited to measure the joint 
distribution, i.e. to display the forecast accuracy on its own. Owing to 
the definition of a quantile, the computation of the PSS simplifies to: 

PSS = 1 – misses/missesrand        missesrand = (p – p2)N 
To complement the verification, the bias is represented by the 
absolute (abs) or relative (rel) quantile difference (QD): 

QDabs = qmod – qobs        QDrel = 2QDabs/(qobs + qmod) 
Note that qobs and qmod denote the observed and modeled (forecasted) 
quantile values, respectively. QDrel is computed according to the 
amplitude component in the SAL measure (Wernli et.al., 2008). The 
value therefore varies between -2 and +2. The QD and the debiased 
PSS split the total error into the independent components of bias and 
accuracy. Together, they provide a complete verification set with the 
ability to assess the whole range of intensities along the distributions 
under comparison.  
 



The conventional PSS (with amplitude thresholds) cannot distinguish 
between an amplitude error and a shift error. Only the quantile-based 
contingency table provides the opportunity to distinguish between the 
two types of errors. The new concept can be exemplified by means of 
a simple forecast paradigm. Consider a constructed forecast problem 
with daily rainfall amounts for 8 days (Fig. 2). The observed 
distribution (Obs.) is symmetric and peaks on day 4 and 5. A first 
forecaster (Fcst 1) is able to estimate the right amounts, but predicts 
the rainfall one day too late, meaning that his forecast exhibits a shift 
error. A second forecaster (Fcst 2) is able to estimate the right timing, 
but overpredicts the rainfall by 2 mm/day, meaning that his forecast 
exhibits a bias. We want to compare both forecasts by means of the 
PSS now. The conventional PSS is applied with an amplitude 
threshold (AT) of 3 mm/day. The result is an equal scoring of PSS = 
0.5 for both forecasters. Thus, both forecasts show the same 
performance, but we cannot assess the error type. The debiased PSS is 
applied with a frequency threshold (FT) of 50%. The result is still 
PSS = 0.5 for the first forecaster, but it is raised to PSS = 1 for the 
second forecaster. Since the bias is disregarded in the PSS now, the 
second forecast is rated optimal. To account for the amplitude error, 
the quantile difference is evaluated. It constitutes QDabs = 0 mm, i.e. 
QDrel = 0, for the first forecast. Likewise, it constitutes QDabs = 2 mm, 
i.e. QDrel = 0.5, for the second forecast. It is now possible to clearly 
distinguish between a shift error and a bias. Thus, room for additional 
insights is provided.  

 
Figure 2: Forecast paradigm of forecasting rainfall amounts for 8 
days: Observations (left), first forecast (middle), second forecast 
(right). The first forecast exhibits a pure shift error of 1 day. The 
second forecast exhibits a pure bias with an overestimation of 2 
mm/day.  The selected amplitude threshold (AT) constitutes 3 
mm/day. The selected frequency threshold (FT) corresponds to the 
50% quantile. 

 
To aggregate the scores over intensities, weighted averages can be 
computed over quantiles. Thereby, QDrel is integrated with its 
absolute value, because individual quantiles with an over- and 
underestimation can cancel each other out otherwise. The weights 
w(p) correspond to the arithmetic and the geometric mean for the 
QDrel and the PSS, respectively: 



 
 
A convenient advantage of using quantiles is a stabilization of the 
sample uncertainty for rare events. Bootstrap confidence intervals for 
the PSS reveal that the uncertainty usually only slightly increases 
while moving towards extreme quantiles. Quantile probabilities 
inherently are not affected by amplitude uncertainties, but their 
transformation to quantile values, i.e. corresponding amplitudes, 
suffers from ambiguities. We can achieve a high confidence for the 
PSS value for a certain quantile, but still hold a low confidence for 
the quantile estimation. However, since arbitrary amplitudes are not 
related to the sample distribution, it is sometimes useful only to 
consider quantiles, corresponding for example to return periods of 
extreme rainfall events. 
 
An elaborate description of the methodology as well as an application 
to daily rainfall forecasts of the COSMO1 model over Switzerland can 
be found in Jenkner et.al. (2008). 
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